Part Number Hot Search : 
ISPLS S3C852B SB3200 SMZ62 AA4040 TMA256B 1H220 G30N60B3
Product Description
Full Text Search
 

To Download BD6670FM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 BD6670FM
Motor driver ICs
3Phase spindle motor driver for CD-RW
BD6670FM
BD6670FM is a 3-phase spindle motor driver adopting 180 PWM direct driving system. Noise occurred from the motor driver when the disc is driver can be reduced. Low power consumption and low heat operation are achieved by using DMOS FET in output and driving directly.
!Applications CD-RW !Features 1) 180 degree Direct-PWM driving system. 2) Built in power save circuit. 3) Built in current limit circuit. 4) Built in FG-output. 5) Built in 3phase synthesized FG-output. 6) Built in hall bias circuit. 7) Built in reverse protection circuit. 8) Built in short brake circuit. 9) Low consumption by MOS-FET. 10) Built in capacitor for oscillator. 11) Built in gain switch and current limit switch.
!Absolute maximum ratings (Ta=25C)
Parameter Power supply voltage Supply voltage for motor VG pin voltage Output current Power dissipation Junction temperature VCC VM VG
Operating temperature range Storage temperature range
1 However, do not exceed Pd, ASO and Tj=150C. The current is guaranteed 3.0A in case of the current is turn on / off in a duty-ratio of less than 1/10 with a maximum on-time of 5msec. 2 70mmx70mmx1.6mm glass epoxy board. Debating in done at 17.6mW / C for operating above Ta=25C.
w
w
w
t a .D
Symbol IOMAX Pd TJMAX Topr Tstg
S a
Limits 7 15 20 150
e h
U t4 e
Unit V V V mA mW C C C
.c
m o
2500 1 2200 2
-20~+75 -55~+150
!Recommended operating conditions
Parameter Power supply voltage Supply voltage for motor VG pin voltage Symbol VCC VM VG Min. 4.5 4.0 8.5 Typ. - - - Max. 5.5 13.2 19 Unit V V V
1/17
w
w w
.D
at
a
he S
4 et
U
o .c
m
BD6670FM
Motor driver ICs
!Block diagram
Hall comp
H1+
EXOR 28
+ -
FG3
1
+ - +
PWM Comp 27 Hall bias
FG
H1-
2
-
Hall Amp
H2+
3
+ - +
26
VH
H2-
4
-
+ -
25 TSD 24
VM
H3+
5
+ - +
A1
H3-
6
-
+ -
U-Pre
23
RNF1
Driver 22
A2
GSW
7 Gain control Matrix
OSC
Driver
L-Pre
Driver
GND
8
21
RNF1
CP1
9 Charge pump
20
A3
CP2
10
19
RNF2
VG
11
PS Torque AMP
18
PS
CNF
12
Current sense Matrix
+ -
CL
+ -
17
EC
SB
13
16
ECR
VCC
14
D CK Q QB
15
VM
Reverse detect
Fig.1
2/17
BD6670FM
Motor driver ICs
!Pin descriptions
Pin No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Pin name H1+ H1- H2+ H2- H3+ H3- GSW GND CP1 CP2 VG CNF SB VCC VM ECR EC PS RNF2 A3 RNF1 A2 RNF1 A1 VM VH FG FG3 Function Hall input AMP 1 positive input Hall input AMP 1 negative input Hall input AMP 2 positive input Hall input AMP 2 negative input Hall input AMP 3 positive input Hall input AMP 3 negative input Gain switch pin GND Capacitor pin 1 for charge pump Capacitor pin 2 for charge pump Capacitor connection pin for charge pump Capacitor connection pin for phase compensation Short brake pin Power supply for signal division Power supply for driver Torque control standard voltage input terminal Torque control voltage input terminal Power save pin Resistor connection pin for current sense Output 3 for motor Resistor connection pin for current sense Output 2 for motor Resistor connection pin for current sense Output 1 for motor Power supply for driver Hall bias pin FG output pin FG3 output pin
3/17
BD6670FM
Motor driver ICs
!Input output circuits
Hall input H1+ : Pin1, H1- : Pin2, H2+ : Pin3, H2- : Pin4, H3+ : Pin5, H3- : Pin6
VCC VCC VCC Hn+ 1k 1k Gain Switch (Pin7) Hn- 1k 75k 10k 10k 25k 50 CP1 (Pin9)
Gain switch Pin7
CP1 output Pin9
VCC 100k VCC VCC
1k 5k
1k
CP2 / VG output CP2 : Pin10, VG : Pin11
CNF Pin12
Short brake Pin13
VCC VM VG (Pin11) CNF (Pin12) 50 SB (Pin13) CP2 (Pin10) 20k 2k 2k 30k VCC
Torque amplifier ECR : Pin16, EC : Pin17
Power save Pin18
RNF2 Pin19
VCC VCC ECR (Pin16) EC (Pin17) PS (Pin18) 1k 20k 30k RNF2 (Pin19) 1k VCC 355
Output pins A1 : Pin24, A2 : Pin22, A3 : Pin20
Hall bias Pin26
FG / FG3 output FG : Pin27, FG3 : Pin28
VM
VCC VCC VCC FG (Pin27) FG3 (Pin28)
A1
A2
A3
VH (Pin26)
50
100k RNF1
4/17
BD6670FM
Motor driver ICs
!Electrical characteristics (unless otherwise noted, Ta=25C, VCC=5V, VM=12V)
Parameter Symbol Min.
Typ.
Max.
Unit
Conditions
Test Circuit Fig.2 Fig.2
Circuit current 1 Circuit current 2 ON voltage range OFF voltage range Hall bias voltage In-phase input voltage range Minimum input level Hall hysteresis level (+) Hall hysteresis level (-) Low voltage range High voltage range Open voltage range Input voltage range Offset voltage (+) Offset voltage (-) Input current Input / Output gain L Input / Output gain M Input / Output gain H Output ON-resistance Torque limit current L Torque limit current M Torque limit current H High voltage Low voltage Charge pump output voltage Upper saturation voltage Lower saturation voltage Upper saturation voltage Lower saturation voltage VCP2H VCP2L 0.4 0.15 0.6 0.35 0.8 0.55 V V ICP2=-4mA ICP2=+4mA Fig.11 Fig.11 VCP1H VCP1L 0.25 0.2 0.45 0.4 0.65 0.6 V V ICP1=-4mA ICP1=+4mA Fig.10 Fig.10 VPUMP 12.5 17 19 V VCC=5V, VM=12V, CP1=CP2=0.1F Fig.9 VFGH VFGL 4.6 - - - - 0.4 V V IFG=-100A IFG=+100A Fig.5 Fig.5 RON ITLL ITLM ITLH - 340 680 1020 1.0 400 800 1200 1.35 460 920 1380 mA mA mA IO=600mA (Upper+Lower) GSW=L, RNF=0.5 GSW=M, RNF=0.5 GSW=H, RNF=0.5 Fig.8 Fig.4 Fig.4 Fig.4 EC, ECR Ecofs+ Ecofs- ECIN GECL GECM GECH 0 5 -100 -11 0.28 0.56 1.12 - 50 -50 -2.5 0.35 0.70 1.40 5 100 5 0 0.42 0.84 1.68 V mV mV A A/V A/V A/V EC=ECR=1.65V GSL=L, RNF=0.5 GSL=M, RNF=0.5 GSL=H, RNF=0.5 Linear range : 0.5V3.0V Fig.6 Fig.6 Fig.6 Fig.6 Fig.7 Fig.7 Fig.7 VGSWL VGSWH VGSWOP - 2.0 - - - 1.3 0.6 - - V V V Fig.4 Fig.4 Fig.4 VHAR VINH VHYS+ VHYS- 1.4 80 5 -40 - - 20 -20 3.6 - 40 -5 V mVPP mV mV Oneside input level Fig.3 Fig.3 Fig.3 Fig.3 VHB 0.7 1.0 1.3 V IHB=10mA Fig.2 VPSON VPSOFF - 2.5 - - 1.0 - V V Stand by mode Fig.2 Fig.2 ICC1 ICC2 - 7
1 12
10 17
A mA
Stand by mode
5/17
BD6670FM
Motor driver ICs
!Measuring circuit
V
0.5 12V 10k
0.01
1.65V
ICC1 : Value of A VPS=Low
ICC2 : Value of A VPS=High
RNF1
RNF1
RNF2
EC
PS
ECR
VH
VM
A1
A2
FG3
FG
A3
VM
VPSON : Range of VPS that output pins become Input-output table
GSW GND H1+ H1- H2- H3+ H3- CNF CP1 CP2
+
H2
VCC
VG
SB
VPSOFF : Range of VPS that output become open
17V H1+ H1- H2+ H2- H3+ H3- 5V
A
VHB : Value of A VPS=5V IVH=10mA
Fig.2
V
0.5 12V 10k
0.01 5V 1.65V
ECR
VHAR : Hall in-phase input voltage range that output pins become Input-output table
RNF1
RNF1
RNF2
FG3
FG
VM
PS
EC
A1
A2
A3
VM
VH
VINH : Hall minimum input level that output pins become Input-output table
GSW GND CNF CP1 CP2
VHYS+/- : Voltage difference H3+ from H3- at the point that FG voltage changes
H1+
H1-
H2+
-
H3+
H3-
H2
17V H1+ H1- H2+ H2- H3+ H3-
5V
Fig.3
VCC
VG
SB
6/17
BD6670FM
Motor driver ICs
5V 12V
1.65V
ITLL : Defining VRNF2 as the voltage that CNF becomes low, ITLL=VRNF2 / 0.5 VGSW=Low ITLM : Defining VRNF2 as the voltage that CNF becomes low, ITLM=VRNF2 / 0.5 VGSW=Open ITLH : Defining VRNF2 as the voltage that CNF becomes low, ITLH=VRNF2 / 0.5 VGSW=High
A1
A2
A3
PS
EC
ECR SB
RNF1
RNF1
RNF2
VM
FG3
FG
GSW
GND
H1+
H1-
H3+
H3-
CNF
CP1
CP2
+
-
H2
H2
VCC
VG
VM
VH
VGSWL : Range of VGSW that ITLL < ITLM VGSWH : Range of VGSW that ITLH > ITLM
17V H1+ H1- H2+ H2- H3+ H3-
V
5V
Fig.4
V3
V2
5V 12V
1.65V
VGSWOP : Value of V VFGH : IFG (IFG3) = Value of V2(V3) at IFG (IFG3) = -100A H1+=L, H2+=M, H3+=H H1-=M, H2-=M, H3-=M (for FG) H1+=L, H2+=H, H3+=H H1-=M, H2-=M, H3-=M (for FG3)
VM
FG3
FG
PS
EC
ECR
A1
A2
RNF1
RNF1
A3
RNF2
VM
VH
VFGL : IFG (IFG3) = Value of V2(V3) at IFG (IFG3) = 100A H1+=M, H2+=H, H3+=L H1-=M, H2-=M, H3-=M (for FG) H1+=L, H2+=H, H3+=L H1-=M, H2-=M, H3-=M (for FG3)
GSW
GND
H1+
H1-
H2+
H2-
H3-
CNF
CP1
CP2
+
H3
V1
17V
5V
H1+ H1- H2+ H2- H3+ H3-
Fig.5
VCC
VG
SB
7/17
BD6670FM
Motor driver ICs
0.01F 0.5 5
V
1.65V 5 10k 5
A1 A2
12V
5V
EC / ECR : Torque control operating range ECOfS+ / - : EC voltage range that VM current is 0A monitor VRNF1 ECIN : Value of A1 and A2 at EC=ECR=1.65V
FG3
FG
A1
A2
A3
PS
EC
ECR SB
VM
RNF1
RNF1
GSW
GND
RNF2
H1+
H1-
H2+
H3+
H3-
CNF
CP1
CP2
-
H2
VCC
VG
VM
VH
5V H1+ H1- H2+ H2- H3+ H3- 0.1F 100pF
Fig.6
0.01 0.5 5
5
V
5 10k 5V 1.65V
12V
GECL : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=0V, GECL={(V1-V2) / (1.5-1.2)} / 0.5
GECM : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=open, GECL={(V1-V2) / (1.5-1.2)} / 0.5
RNF1
RNF1
RNF2
VM
PS
EC
ECR
FG3
FG
A1
A2
A3
VM
VH
GECH : Defining V1 as value of V at EC=1.2V and V2 as value of V at EC=1.5V on condition that GSW=5V, GECL={(V1-V2) / (1.5-1.2)} / 0.5
GSW
GND
H1+
H1-
H3+
H3-
CNF
CP1
CP2
+
-
H2
H2
VCC
VG
SB
17V H1+ H1- H2+ H2- H3+ H3- 100pF
5V
Fig.7
8/17
BD6670FM
Motor driver ICs
5V 12V
1.65V
VOH : Value of V on condition that output pin is H and IO=-600mA
RNF1 RNF1 RNF2 VM FG3 FG PS EC ECR A1 A2 A3 VM VH
VOL : Value of V on condition that output pin is L and IO=600mA RON : RON = (VOH + VOL) / 0.6
GSW
GND
H1+
H1-
H2+
H3+
H3-
CNF
CP1
CP2
-
H2
VCC
5V
VG
5V H1+ H1- H2+ H2- H3+ H3-
17V
VM
V
A1, A2, A3 600mA
V
A1, A2, A3 600mA Measurement of VOH
Measurement of VOL
Fig.8
5V 12V
SB
1.65V
VPUMP : Value of V
PS EC ECR SB FG3 FG A1 A2 A3 VM RNF1 RNF1 RNF2 VM VCC
5V
VH
GSW
GND
H1+
H2+
H2-
H3-
H1
H3
H1+ H1- H2+ H2- H3+ H3- 0.1F
Fig.9
CNF
V
CP1
CP2
-
+
VG
9/17
BD6670FM
Motor driver ICs
5V 12V
1.65V
VM
A1
A2
A3
EC
PS
ECR
FG3
FG
RNF1
RNF1
RNF2
VM
VH
VCP1H : Value of V on condition that CP1 is H and ICP1=-4mA VCP1L : Value of V on condition that CP1 is L and ICP1=4mA
GSW
GND
H1+
H1-
H3+
H3-
CNF
CP1
CP2
+
-
H2
H2
VCC
5V
VG
V
17V
H1+ H1- H2+ H2- H3+ H3-
Fig.10
5V 12V
SB
1.65V
A1
A2
A3
PS
EC
ECR
FG3
FG
RNF1
RNF1
RNF2
VH
VM
VM
VCP2H : Value of V on condition that CP2 is H and ICP2=-4mA VCP2L : Value of V on condition that CP2 is L and ICP2=4mA
GSW
GND
H1+
H1-
H3+
H3-
CNF
CP1
CP2
+
-
H2
H2
VCC
5V
VG
V
17V
H1+ H1- H2+ H2- H3+ H3-
Fig.11
SB
10/17
BD6670FM
Motor driver ICs
!Circuit operation 1. Application (1) Input-output table
Input condition Pin No. Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6 1 H1+ L H M M H L 2 H1- M M M M M M 3 H2+ H L L H M M 4 H2- M M M M M M 5 H3+ M M H L L H 6 H3- M M M M M M 24 A1 H L L H L H Output condition ECECR 22 A2 H L L H H L 20 A3 H L H L L H
(2) Hall input Hall element can be used with both series and parallel connection. Determining R1 and R2, make sure to leave an adequate margin for temperature and dispertion in order to satisfy in-phase input voltage range and minimum input level. A motor doesn't reach the regular number of rotation, if hall input decrease under high temperature.
VCC R1 H1 H1 H2 H3 H2 H3 R2 VH Parallel connection R2 VH Series connection VCC R1
Fig.12
11/17
BD6670FM
Motor driver ICs
(3) Torque voltage By the voltage difference between EC and ECR, the current driving motor changes as shown in Fig.13 below.
IM [A] ITL
Forward torque
Reverse torque
0 ECR EC [V]
Fig.13
The gain of the current driving motor for the voltage of EC can be changed by the resistance of RNF and the voltage of GSW. GECL=0.175 / RNF [A / V] (GSW=L) GECM=0.35 / RNF [A / V] (GSW=M) GECH=0.70 / RNF [A / V] (GSW=H)
(4) Current limit The maximum value of the current driving motor can be changed by the resistance of RNF and the voltage of GSW. ITLL=0.2 / RNF [A] (GSW=L) ITLM=0.4 / RNF [A] (GSW=M) ITLH=0.6 / RNF [A] (GSW=H)
12/17
BD6670FM
Motor driver ICs
(5) Short brake The short brake is switched by SB pin and its operation is shown in table below.
SB L H EC < ECR Rotating forward Short brake EC > ECR Reverse brake Short brake
Output upper (3phase) FET turn off and lower (3phase) FET turn on in short brake mode, as shown Fig.14.
VM
OFF
OFF
OFF
ON
ON
ON
RNF
MOTOR
Fig.14
(6) Reverse detection Reverse detection is constructed as shown in Fig.15. Output is opened when EC>ECR and the motor is rotating reverse.
H2+ H2-
+ - + -
D
Q
OUT
H3+ H3-
CK
EC ECR
+ -
Fig.15
13/17
BD6670FM
Motor driver ICs
Motor rotation at reverse detection
Forward rotation (forward torque) when EC < ECR
Deceleration (reverse torque) when EC > ECR
Reverse detection is triggered and set outputs to open, when motor rotates in the reverse direction.
Motor idles in the reverse direction by inertia.
Stop
14/17
BD6670FM
Motor driver ICs
(6) Timing chart
H1+
H2+
H3+ 30 A1 Output current
A1 Output voltage
A2 Output current
A2 Output voltage
A3 Output current
A3 Output voltage
Fig.16
15/17
BD6670FM
Motor driver ICs
!Application example
100
H1+
Hall comp
+ -
EXOR
FG3
H1 1000pF
H1-
+ -
+ -
PWM Comp
FG
H2+
Hall Amp
+ -
VH
Hall bias
VM
H2 1000pF
H2-
+ -
+ -
TSD
A1
H3+
+ -
H3 1000pF 100 VCC
H3-
+ -
RNF1
+ -
0.5
U-Pre
GSW
Driver
A2
Gain control
OSC
Matrix
Driver
L-Pre GND
Driver
RNF1
CP1
A3
0.1F
CP2
Charge pump
RNF2
10k 0.01F
VG
PS
0.1F
CNF
PS Torque AMP
EC
VCC Servo signal
ECR
100pF VCC
SB
Current sense Matrix
VCC
+ -
CL
+ -
1.65V
VM
10F
D CK Q QB
100F Reverse detect
Fig.17
!Operation notes 1. Absolute maximum ratings Absolute maximum ratings are those values which, if exceeded, may cause the life of a device to become significantly shorted. Moreover, the exact failure mode cannot be defined, such as a short or an open. Physical countermeasures, such as fuse, need to be considered when using a device beyond its maximum ratings. 2. GND potential The GND terminal should be the location of the lowest voltage on the chip. All other terminals should never go under this GND level, even in transition.
16/17
BD6670FM
Motor driver ICs
3. Thermal design The thermal design should allow enough margin for actual power dissipation. 4. Mounting failures Mounting failures, such as misdirection or mismounts, may destroy the device. 5. Electromagnetic fields A strong electromagnetic field may cause malfunctions. 6. Coil current flowing into VM A coil current flows from motor into VM when torque control input changes from ECECR, and VM voltage rises if VM voltage source doesn't have an ability of current drain. A protect circuit turns on and a current (40mA (typ.)) flows from VM to GND when VM voltage reaches to 15V (Typ.). Make sure that surrounding circuits work correctly and aren't destroyed, when VM voltage rises. Physical countermeasures, such as a diode for voltage clamp, need to be considered under these conditions. 7. CNF pin An appropriate capacitor (100pF (typ.)) at CNF pin make motor current smooth. Make sure the motor current doesn't oscillate, even in transition.
!Electrical characteristics curve
Pd (W) 2.2 2.0
1.5
1.0
0.5
0
0
25
50
75
100
125
150 Ta (C)
70mmx70mmx1.6mm glass epoxy board. Debating in done at 17.6mW/C for operating aboveTa=25C.
Fig.16 Power dissipation curve
!External dimensions (Units : mm)
18.50.2
28 15
9.90.3
7.50.2
1
14
5.150.1
0.250.1
2.20.1
0.11
0.8 0.350.1 0.08 M 16.00.2
0.1 S
HSOP-M28
0.50.2
17/17


▲Up To Search▲   

 
Price & Availability of BD6670FM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X